/* THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX SOFTWARE CORPORATION ("PARALLAX"). PARALLAX, IN DISTRIBUTING THE CODE TO END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS IN USING, DISPLAYING, AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE FREE PURPOSES. IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES. THE END-USER UNDERSTANDS AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE. COPYRIGHT 1993-1999 PARALLAX SOFTWARE CORPORATION. ALL RIGHTS RESERVED. */ #pragma off (unreferenced) static char rcsid[] = "$Id: ntmap.c 1.66 1996/12/04 19:27:55 matt Exp $"; #pragma on (unreferenced) #define VESA 0 #define NUM_TMAPS 16 #define HEADLIGHT_LIGHTING 0 #define WIREFRAME 0 #define PERSPECTIVE 1 #include #include #include #include #include #include "pa_enabl.h" //$$POLY_ACC #include "mono.h" #include "fix.h" #include "3d.h" #include "gr.h" #include "error.h" #include "key.h" #include "texmap.h" #include "texmapl.h" #include "rle.h" #include "scanline.h" #if defined(POLY_ACC) #include "poly_acc.h" #endif #define EDITOR_TMAP 1 //if in, include extra stuff #define F15_5 (F1_0*15 + F0_5) // 1 means enable special sc2000 code, else enable only for Descent #define SC2000K 0 int SC2000 = SC2000K; // Temporary texture map, interface from Matt's 3d system to Mike's texture mapper. g3ds_tmap Tmap1; grs_bitmap Texmap_ptrs[NUM_TMAPS]; grs_bitmap Texmap4_ptrs[NUM_TMAPS]; fix Range_max=0; // debug, kill me int Interpolation_method=0; // 0 = choose best method int Lighting_on; // initialize to no lighting int Tmap_flat_flag = 0; // 1 = render texture maps as flat shaded polygons. int Current_seg_depth; // HACK INTERFACE: how far away the current segment (& thus texture) is int Max_perspective_depth; int Max_linear_depth; int Max_flat_depth; //variables for clipping the texture-mapper to screen region int Window_clip_left, Window_clip_bot, Window_clip_right, Window_clip_top; // These variables are the interface to assembler. They get set for each texture map, which is a real waste of time. // They should be set only when they change, which is generally when the window bounds change. And, even still, it's // a pretty bad interface. int bytes_per_row=-1; int write_buffer; int window_left; int window_right; int window_top; int window_bottom; int window_width; int window_height; uint dest_row_data; int loop_count; #define MAX_Y_POINTERS 1024 int y_pointers[MAX_Y_POINTERS]; #ifdef USE_SELECTORS short pixel_data_selector; // selector for current pixel data for texture mapper #endif fix fix_recip[FIX_RECIP_TABLE_SIZE]; int Fix_recip_table_computed=0; fix fx_l, fx_u, fx_v, fx_z, fx_du_dx, fx_dv_dx, fx_dz_dx, fx_dl_dx; int fx_xleft, fx_xright, fx_y, fx_u_right, fx_v_right, fx_z_right; unsigned char * pixptr; int Transparency_on = 0; int dither_intensity_lighting = 0; ubyte * tmap_flat_cthru_table; ubyte tmap_flat_color; ubyte tmap_flat_shade_value; // F1_0/Z LOOKUP TABLE: // Sig bits... 10 looks fuzzy, but only uses 4K // 11 breaks up when close, but quite acceptable, Uses 8K // 12 looks good,except when very close. Can be used for game. Uses 16K. Recommended by John. #define DIVIDE_SIG_BITS 12 #define Z_SHIFTER (30-DIVIDE_SIG_BITS) #define DIVIDE_TABLE_SIZE (1<cv_bitmap; Assert(bp!=NULL); Assert(bp->bm_data!=NULL); Assert(bp->bm_h <= MAX_Y_POINTERS); // If bytes_per_row has changed, create new table of pointers. if (bytes_per_row != (int) bp->bm_rowsize) { int y_val, i; bytes_per_row = (int) bp->bm_rowsize; y_val = 0; for (i=0; ibm_data; window_left = 0; window_right = (int) bp->bm_w-1; window_top = 0; window_bottom = (int) bp->bm_h-1; Window_clip_left = window_left; Window_clip_right = window_right; Window_clip_top = window_top; Window_clip_bot = window_bottom; window_width = bp->bm_w; window_height = bp->bm_h; if (!Fix_recip_table_computed) init_fix_recip_table(); #if defined(POLY_ACC) pa_set_3d_offset(bp->bm_x, bp->bm_y); #endif if ( !divide_table_filled ) fill_divide_table(); } // ------------------------------------------------------------------------------------- // VARIABLES extern g3ds_tmap Tmap1; // ------------------------------------------------------------------------------------- // Returns number preceding val modulo modulus. // prevmod(3,4) = 2 // prevmod(0,4) = 3 int prevmod(int val,int modulus) { if (val > 0) return val-1; else return modulus-1; // return (val + modulus - 1) % modulus; } // Returns number succeeding val modulo modulus. // succmod(3,4) = 0 // succmod(0,4) = 1 int succmod(int val,int modulus) { if (val < modulus-1) return val+1; else return 0; // return (val + 1) % modulus; } // ------------------------------------------------------------------------------------- // Select topmost vertex (minimum y coordinate) and bottommost (maximum y coordinate) in // texture map. If either is part of a horizontal edge, then select leftmost vertex for // top, rightmost vertex for bottom. // Important: Vertex is selected with integer precision. So, if there are vertices at // (0.0,0.7) and (0.5,0.3), the first vertex is selected, because they y coordinates are // considered the same, so the smaller x is favored. // Parameters: // nv number of vertices // v3d pointer to 3d vertices containing u,v,x2d,y2d coordinates // Results in: // *min_y_ind // *max_y_ind // ------------------------------------------------------------------------------------- void compute_y_bounds(g3ds_tmap *t, int *vlt, int *vlb, int *vrt, int *vrb,int *bottom_y_ind) { int i; int min_y,max_y; int min_y_ind; int original_vrt; fix min_x; // Scan all vertices, set min_y_ind to vertex with smallest y coordinate. min_y = f2i(t->verts[0].y2d); max_y = min_y; min_y_ind = 0; min_x = f2i(t->verts[0].x2d); *bottom_y_ind = 0; for (i=1; inv; i++) { if (f2i(t->verts[i].y2d) < min_y) { min_y = f2i(t->verts[i].y2d); min_y_ind = i; min_x = f2i(t->verts[i].x2d); } else if (f2i(t->verts[i].y2d) == min_y) { if (f2i(t->verts[i].x2d) < min_x) { min_y_ind = i; min_x = f2i(t->verts[i].x2d); } } if (f2i(t->verts[i].y2d) > max_y) { max_y = f2i(t->verts[i].y2d); *bottom_y_ind = i; } } //--removed mk, 11/27/94-- // Check for a non-upright-hourglass polygon and fix, if necessary, by bashing a y coordinate. //--removed mk, 11/27/94-- // min_y_ind = index of minimum y coordinate, *bottom_y_ind = index of maximum y coordinate //--removed mk, 11/27/94--{ //--removed mk, 11/27/94-- int max_temp, min_temp; //--removed mk, 11/27/94-- //--removed mk, 11/27/94-- max_temp = *bottom_y_ind; //--removed mk, 11/27/94-- if (*bottom_y_ind < min_y_ind) //--removed mk, 11/27/94-- max_temp += t->nv; //--removed mk, 11/27/94-- //--removed mk, 11/27/94-- for (i=min_y_ind; iverts[i%t->nv].y2d) > f2i(t->verts[(i+1)%t->nv].y2d)) { //--removed mk, 11/27/94-- Int3(); //--removed mk, 11/27/94-- t->verts[(i+1)%t->nv].y2d = t->verts[i%t->nv].y2d; //--removed mk, 11/27/94-- } //--removed mk, 11/27/94-- } //--removed mk, 11/27/94-- //--removed mk, 11/27/94-- min_temp = min_y_ind; //--removed mk, 11/27/94-- if (min_y_ind < *bottom_y_ind) //--removed mk, 11/27/94-- min_temp += t->nv; //--removed mk, 11/27/94-- //--removed mk, 11/27/94-- for (i=*bottom_y_ind; iverts[i%t->nv].y2d) < f2i(t->verts[(i+1)%t->nv].y2d)) { //--removed mk, 11/27/94-- Int3(); //--removed mk, 11/27/94-- t->verts[(i+1)%t->nv].y2d = t->verts[i%t->nv].y2d; //--removed mk, 11/27/94-- } //--removed mk, 11/27/94-- } //--removed mk, 11/27/94--} // Set "vertex left top", etc. based on vertex with topmost y coordinate *vlt = min_y_ind; *vrt = *vlt; *vlb = prevmod(*vlt,t->nv); *vrb = succmod(*vrt,t->nv); // If right edge is horizontal, then advance along polygon bound until it no longer is or until all // vertices have been examined. // (Left edge cannot be horizontal, because *vlt is set to leftmost point with highest y coordinate.) original_vrt = *vrt; while (f2i(t->verts[*vrt].y2d) == f2i(t->verts[*vrb].y2d)) { if (succmod(*vrt,t->nv) == original_vrt) { break; } *vrt = succmod(*vrt,t->nv); *vrb = succmod(*vrt,t->nv); } } // ------------------------------------------------------------------------------------- // Returns dx/dy given two vertices. // If dy == 0, returns 0.0 // ------------------------------------------------------------------------------------- //--fix compute_dx_dy_lin(g3ds_tmap *t, int top_vertex,int bottom_vertex) //--{ //-- int dy; //-- //-- // compute delta x with respect to y for any edge //-- dy = f2i(t->verts[bottom_vertex].y2d - t->verts[top_vertex].y2d) + 1; //-- if (dy) //-- return (t->verts[bottom_vertex].x2d - t->verts[top_vertex].x2d) / dy; //-- else //-- return 0; //-- //--} fix compute_du_dy_lin(g3ds_tmap *t, int top_vertex,int bottom_vertex, fix recip_dy) { return fixmul(t->verts[bottom_vertex].u - t->verts[top_vertex].u, recip_dy); } fix compute_dv_dy_lin(g3ds_tmap *t, int top_vertex,int bottom_vertex, fix recip_dy) { return fixmul(t->verts[bottom_vertex].v - t->verts[top_vertex].v, recip_dy); } fix compute_dl_dy_lin(g3ds_tmap *t, int top_vertex,int bottom_vertex, fix recip_dy) { return fixmul(t->verts[bottom_vertex].l - t->verts[top_vertex].l, recip_dy); } fix compute_dx_dy(g3ds_tmap *t, int top_vertex,int bottom_vertex, fix recip_dy) { return fixmul(t->verts[bottom_vertex].x2d - t->verts[top_vertex].x2d, recip_dy); } fix compute_du_dy(g3ds_tmap *t, int top_vertex,int bottom_vertex, fix recip_dy) { return fixmul(fixmul(t->verts[bottom_vertex].u,t->verts[bottom_vertex].z) - fixmul(t->verts[top_vertex].u,t->verts[top_vertex].z), recip_dy); } fix compute_dv_dy(g3ds_tmap *t, int top_vertex,int bottom_vertex, fix recip_dy) { return fixmul(fixmul(t->verts[bottom_vertex].v,t->verts[bottom_vertex].z) - fixmul(t->verts[top_vertex].v,t->verts[top_vertex].z), recip_dy); } fix compute_dz_dy(g3ds_tmap *t, int top_vertex,int bottom_vertex, fix recip_dy) { return fixmul(t->verts[bottom_vertex].z - t->verts[top_vertex].z, recip_dy); } int Skip_short_flag=0; // ------------------------------------------------------------------------------------- // Texture map current scanline in perspective. // ------------------------------------------------------------------------------------- int Do_vertical_scan=0; int Break_on_flat=0; // ------------------------------------------------------------------------------------- // Render a texture map with lighting using perspective interpolation in inner and outer loops. // ------------------------------------------------------------------------------------- void ntmap_outerloop_correct_lighted( g3ds_tmap *t ) { #define LINEAR 0 // 0=Perspective, 1=Linear #define LIGHTING 1 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_per // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_per // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } void ntmap_outerloop_correct_nolight( g3ds_tmap *t ) { #define LINEAR 0 // 0=Perspective, 1=Linear #define LIGHTING 0 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_per_nolight // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_per // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_llt(); void ntmap_outerloop_lin_lighted_trans( g3ds_tmap *t ) { #define LINEAR 1 // 0=Perspective, 1=Linear #define LIGHTING 1 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_lin // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_llt // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_lln(); void ntmap_outerloop_lin_lighted_notrans( g3ds_tmap *t ) { #define LINEAR 1 // 0=Perspective, 1=Linear #define LIGHTING 1 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_lin // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_lln // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_plt(); void ntmap_outerloop_per_lighted_trans( g3ds_tmap *t ) { #define LINEAR 0 // 0=Perspective, 1=Linear #define LIGHTING 1 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_per // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_plt // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_pln(); void ntmap_outerloop_per_lighted_notrans( g3ds_tmap *t ) { #define LINEAR 0 // 0=Perspective, 1=Linear #define LIGHTING 1 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_per // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_pln // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_lnt(); void ntmap_outerloop_lin_nolight_trans( g3ds_tmap *t ) { #define LINEAR 1 // 0=Perspective, 1=Linear #define LIGHTING 0 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_lin_nolight // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_lnt // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_lnn(); void ntmap_outerloop_lin_nolight_notrans( g3ds_tmap *t ) { #define LINEAR 1 // 0=Perspective, 1=Linear #define LIGHTING 0 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_lin_nolight // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_lnn // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_pnt(); void ntmap_outerloop_per_nolight_trans( g3ds_tmap *t ) { #define LINEAR 0 // 0=Perspective, 1=Linear #define LIGHTING 0 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_per_nolight // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_pnt // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_pnn(); void ntmap_outerloop_per_nolight_notrans( g3ds_tmap *t ) { #define LINEAR 0 // 0=Perspective, 1=Linear #define LIGHTING 0 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_per_nolight // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_pnn // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_editor(); extern void c_tmap_scanline_editor(); void ntmap_outerloop_editor( g3ds_tmap *t ) { #define LINEAR 0 // 0=Perspective, 1=Linear #define LIGHTING 0 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_editor // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_editor // Function to be called when ready to draw. #endif #define CHECK_WINDOW 0 // Set to 1 to check window clip #define USE_UVS 1 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } // ------------------------------------------------------------------------------------- // Render a texture map. // Linear in outer loop, linear in inner loop. // ------------------------------------------------------------------------------------- void texture_map_flat(g3ds_tmap *t) { #define LINEAR 1 // 0=Perspective, 1=Linear #define LIGHTING 0 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_flat // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_flat // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 0 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } extern void asm_tmap_scanline_shaded(); // In tmapfade.asm void texture_map_flat_faded(g3ds_tmap *t) { #define LINEAR 1 // 0=Perspective, 1=Linear #define LIGHTING 0 // 0=No lighting, 1=Use lighting #ifdef NASM #define INNER_LOOP c_tmap_scanline_shaded // Function to be called when ready to draw. #else #define INNER_LOOP asm_tmap_scanline_shaded // Function to be called when ready to draw. #endif #define CHECK_WINDOW 1 // Set to 1 to check window clip #define USE_UVS 0 // Set to 1 to enable U,V interpolation #include "ntmapout.h" } // fix DivNum = F1_0*12; extern void draw_tmap_flat(grs_bitmap *bp,int nverts,g3s_point **vertbuf); // ------------------------------------------------------------------------------------- // Interface from Matt's data structures to Mike's texture mapper. // ------------------------------------------------------------------------------------- void draw_tmap(grs_bitmap *bp,int nverts,g3s_point **vertbuf) { int i; int lighting_mode = Lighting_on; int render_method; fix min_z; #ifdef _3DFX int bm_index = bp->bm_handle; #endif Assert(nverts <= MAX_TMAP_VERTS); Assert(bp->bm_w == 64); Assert(Lighting_on < 3); // If no transparency and seg depth is large, render as flat shaded. if ((Current_seg_depth > Max_linear_depth) && ((bp->bm_flags & 3) == 0)) { draw_tmap_flat(bp, nverts, vertbuf); return; } if ( bp->bm_flags & BM_FLAG_RLE ) { bp = rle_expand_texture( bp ); // Expand if rle'd #ifdef _3DFX bp->bm_handle = bm_index; #endif } Transparency_on = bp->bm_flags & BM_FLAG_TRANSPARENT; if (bp->bm_flags & BM_FLAG_NO_LIGHTING) lighting_mode = 0; pixptr = bp->bm_data; render_method = Interpolation_method; if (render_method==0) { if (Current_seg_depth > Max_perspective_depth) render_method = 1; // use linear else render_method = 2; // use perspective } // Setup texture map in Tmap1 Tmap1.nv = nverts; // Initialize number of vertices for (i=0; ix2d = vp->p3_sx; tvp->y2d = vp->p3_sy; tvp->u = vp->p3_u << 6; //* bp->bm_w; tvp->v = vp->p3_v << 6; //* bp->bm_h; // Perspective stuff: if ( render_method > 1 ) { //Check for overflow on fixdiv. Will overflow on vp->z <= something small. Allow only as low as 256. if (vp->p3_z < 256) { vp->p3_z = 256; // Int3(); // we would overflow if we divided! } tvp->z = vp->p3_z; //fixdiv(F1_0*12, vp->p3_z); if ( (i==0) || (tvp->z < min_z) ) min_z = tvp->z; } #ifdef _3DFX tvp->z = vp->p3_z; #endif #if defined(POLY_ACC) #ifdef PA_3DFX_VOODOO tvp->z = vp->p3_z; #endif #endif // Lighting stuff: if (lighting_mode) tvp->l = vp->p3_l * NUM_LIGHTING_LEVELS; } #if defined(POLY_ACC) #ifdef PA_3DFX_VOODOO switch (render_method) { case 1: // linear interpolation pa_draw_tmap(bp, &Tmap1, Transparency_on, lighting_mode, 0, min_z); // linear break; case 2: case 3: // perspective every pixel interpolation pa_draw_tmap(bp, &Tmap1, Transparency_on, lighting_mode, 1, min_z); // persp. break; default: Assert(0); // Illegal value for Interpolation_method, must be 0,1,2,3 } return; #endif #endif #ifdef _3DFX if ( _3dfx_available ) { if ( _3dfx_rendering_poly_obj ) { _3dfx_DownloadAndUseTexture( bp->bm_handle ); } if ( Lighting_on ) { guColorCombineFunction( GR_COLORCOMBINE_TEXTURE_TIMES_ITRGB ); _3dfxDrawTmap( bp, &Tmap1 ); } else { guColorCombineFunction( GR_COLORCOMBINE_DECAL_TEXTURE ); _3dfxDrawTmap( bp, &Tmap1 ); } } _3dfx_triangles_rendered_post_clip += Tmap1.nv - 2; if ( _3dfx_skip_ddraw ) goto done; #endif // Calculate 1/Z for perspective if ( render_method > 1 ) { g3ds_vertex *tvp = Tmap1.verts; for (i=0; iz = fixdiv( min_z, tvp->z ); // Z is now in the range 0-F1_0 (17 bits) // So, in the next line, we need to // scale Z down so that it fits in the available // number of significant bits (12 bits now). But, at the // same time, we're scaling it up by Z_SHIFTER amount so // that it use 30 bits for Z interpolation, which keeps the // dz_dx values from becoming so small that they go to zero. tvp->z <<= Z_SHIFTER-(17-DIVIDE_SIG_BITS); } } // render_method: // 1 = linear, 2 = subdivided perspective, 3 = full perspective // lighting_mode: // 0 = no lighting, 1=lighting, 2=editor #if defined(POLY_ACC) switch (render_method) { /* obsolete 3/5/96. case 0: // choose best interpolation if (Current_seg_depth > Max_perspective_depth) pa_draw_tmap(bp, &Tmap1, Transparency_on, lighting_mode, 0); // linear else pa_draw_tmap(bp, &Tmap1, Transparency_on, lighting_mode, 1); // persp. break; */ case 1: // linear interpolation pa_draw_tmap(bp, &Tmap1, Transparency_on, lighting_mode, 0, min_z); // linear break; case 2: case 3: // perspective every pixel interpolation pa_draw_tmap(bp, &Tmap1, Transparency_on, lighting_mode, 1, min_z); // persp. break; default: Assert(0); // Illegal value for Interpolation_method, must be 0,1,2,3 } #else switch( lighting_mode ) { case 0: switch (render_method) { case 1: // linear interpolation if (Transparency_on) ntmap_outerloop_lin_nolight_trans(&Tmap1); else ntmap_outerloop_lin_nolight_notrans(&Tmap1); break; case 2: // subdivided perspective if (Transparency_on) ntmap_outerloop_per_nolight_trans( &Tmap1 ); else ntmap_outerloop_per_nolight_notrans( &Tmap1 ); break; case 3: // perspective every pixel interpolation ntmap_outerloop_correct_nolight( &Tmap1 ); break; default: Assert(0); // Illegal value for Interpolation_method, must be 0,1,2,3 } break; case 1: switch (render_method) { case 1: // linear interpolation if (Transparency_on) ntmap_outerloop_lin_lighted_trans(&Tmap1); else ntmap_outerloop_lin_lighted_notrans(&Tmap1); break; case 2: // subdivided perspective if (Transparency_on) ntmap_outerloop_per_lighted_trans( &Tmap1 ); else ntmap_outerloop_per_lighted_notrans( &Tmap1 ); break; case 3: // perspective every pixel interpolation ntmap_outerloop_correct_lighted( &Tmap1 ); break; default: Assert(0); // Illegal value for Interpolation_method, must be 0,1,2,3 } break; #ifdef EDITOR_TMAP case 2: ntmap_outerloop_editor( &Tmap1 ); break; #endif } #endif //POLY_ACC #ifdef _3DFX done: return; #endif } #ifdef _3DFX #define SNAP( a ) ( ( fix ) ( (a) & ( 0xFFFFF000L ) ) ) void _3dfxDrawTmap( grs_bitmap *bp, g3ds_tmap *Tmap1 ) { GrVertex a, b, c; int i; if ( _3dfx_no_texture ) guColorCombineFunction( GR_COLORCOMBINE_ITRGB ); a.r = a.g = a.b = Tmap1->verts[0].l * fix_to_rgb; a.tmuvtx[0].oow = a.oow = 1.0 / ( Tmap1->verts[0].z * fix_to_float ); a.tmuvtx[0].sow = Tmap1->verts[0].u * fix_to_st * a.oow; a.tmuvtx[0].tow = Tmap1->verts[0].v * fix_to_st * a.oow; a.x = SNAP( Tmap1->verts[0].x2d ) * fix_to_float; a.y = SNAP( Tmap1->verts[0].y2d ) * fix_to_float; for ( i = 1; i < Tmap1->nv - 1; i++ ) { b.r = b.g = b.b = Tmap1->verts[i].l * fix_to_rgb; b.tmuvtx[0].oow = b.oow = 1.0 / ( Tmap1->verts[i].z * fix_to_float ); b.tmuvtx[0].sow = Tmap1->verts[i].u * fix_to_st * b.oow; b.tmuvtx[0].tow = Tmap1->verts[i].v * fix_to_st * b.oow; b.x = SNAP( Tmap1->verts[i].x2d ) * fix_to_float; b.y = SNAP( Tmap1->verts[i].y2d ) * fix_to_float; c.r = c.g = c.b = Tmap1->verts[i+1].l * fix_to_rgb; c.tmuvtx[0].oow = c.oow = 1.0 / ( Tmap1->verts[i+1].z * fix_to_float ); c.tmuvtx[0].sow = Tmap1->verts[i+1].u * fix_to_st * c.oow; c.tmuvtx[0].tow = Tmap1->verts[i+1].v * fix_to_st * c.oow; c.x = SNAP( Tmap1->verts[i+1].x2d ) * fix_to_float; c.y = SNAP( Tmap1->verts[i+1].y2d ) * fix_to_float; grDrawTriangle( &a, &b, &c ); } } #endif