//---------------------------------------------------------------------------- // MD5 clone. //---------------------------------------------------------------------------- #define WIN32_LEAN_AND_MEAN #include #include #include #include "md52.h" ///#define ASM #define LITTLE_ENDIAN //---------------------------------------------------------------------------- // This code implements the MD5 message-digest algorithm. To compute // the message digest of a chunk of bytes, declare an MD5Context // structure, pass it to MD5Init, call MD5Update as needed on // buffers full of bytes, and then call MD5Final, which will fill a // supplied 16-byte array with the digest. // // Equivalent code is available from RSA Data Security, Inc. This code // has been tested against that, and is equivalent, except that you // don't need to include two pages of legalese with every copy. //---------------------------------------------------------------------------- #ifdef LITTLE_ENDIAN #define byteReverse(buf, len) // Do nothing. #else void byteReverse(unsigned char *buf, unsigned longs); #ifndef ASM // Note: this code is harmless on big-endian machines. void byteReverse(unsigned char *buf, unsigned longs) { uint32 t; do { t = (((((buf[3] << 8) | buf[2]) << 8) | buf[1]) << 8) | buf[0]; *(uint32 *)buf = t; buf += 4; } while (--longs); } #endif #endif //---------------------------------------------------------------------------- // Start MD5 accumulation. Set bit count to 0 and buffer to mysterious // initialization constants. //---------------------------------------------------------------------------- void MD5Init2(struct MD5Context *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } //---------------------------------------------------------------------------- // Update context to reflect the concatenation of another buffer full // of bytes. //---------------------------------------------------------------------------- void MD5Update2(struct MD5Context *ctx, unsigned char *buf, unsigned len) { uint32 t; // Update bitcount t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) ctx->bits[1]++; // Carry from low to high ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data. // Handle any leading odd-sized chunks if (t) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64-t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); Transform2(ctx->buf, (uint32 *)ctx->in); buf += t; len -= t; } // Process data in SHS_BLOCKSIZE chunks while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); Transform2(ctx->buf, (uint32 *)ctx->in); buf += 64; len -= 64; } // Handle any remaining bytes of data. memcpy(ctx->in, buf, len); } //---------------------------------------------------------------------------- // Final wrapup - pad to 64-byte boundary with the bit pattern // 1 0* (64-bit count of bits processed, MSB-first). //---------------------------------------------------------------------------- void MD5Final2(unsigned char digest[16], struct MD5Context *ctx) { unsigned count; unsigned char *p; // Compute number of bytes mod 64. count = (ctx->bits[0] >> 3) & 0x3F; // Set the first char of padding to 0x80. This is safe since there is // always at least one byte free. p = ctx->in + count; *p++ = 0x80; // Bytes of padding needed to make 64 bytes. count = 64 - 1 - count; // Pad out to 56 mod 64. if (count < 8) { // Two lots of padding: Pad the first block to 64 bytes. memset(p, 0, count); byteReverse(ctx->in, 16); Transform2(ctx->buf, (uint32 *)ctx->in); // Now fill the next block with 56 bytes. memset(ctx->in, 0, 56); } else { // Pad block to 56 bytes. memset(p, 0, count-8); } byteReverse(ctx->in, 14); // Append length in bits and transform. ((uint32 *)ctx->in)[ 14 ] = ctx->bits[0]; ((uint32 *)ctx->in)[ 15 ] = ctx->bits[1]; Transform2(ctx->buf, (uint32 *)ctx->in); memcpy(digest, ctx->buf, 16); byteReverse(digest, 4); } #ifndef ASM //---------------------------------------------------------------------------- // The four core functions - F1 is optimized somewhat //---------------------------------------------------------------------------- // #define F1(x, y, z) (x & y | ~x & z) #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) //---------------------------------------------------------------------------- // This is the central step in the MD5 algorithm. //---------------------------------------------------------------------------- #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) //---------------------------------------------------------------------------- // The core of the MD5 algorithm, this alters an existing MD5 hash to // reflect the addition of 16 longwords of new data. MD5Update blocks // the data and converts bytes into longwords for this routine. //---------------------------------------------------------------------------- void Transform2(uint32 buf[4], uint32 in[16]) { register uint32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } #endif //---------------------------------------------------------------------------- // Hash a string. //---------------------------------------------------------------------------- BOOL MD5HashText(LPCSTR sText, BYTE Hash[MD5_HASH_SIZE]) { struct MD5Context Context; MD5Init2(&Context); MD5Update2(&Context, (BYTE*)sText, strlen(sText)); MD5Final2(Hash, &Context); return TRUE; } //---------------------------------------------------------------------------- // Convert a Hash value to something we can print. //---------------------------------------------------------------------------- void MD5HashToStr(BYTE buf[MD5_HASH_SIZE], LPSTR sText) { char sByte[4]; wsprintf(sText, "%02x", *buf++); for (int i = 0; i < MD5_HASH_SIZE - 1; i++) { wsprintf(sByte, " %02x", *buf++); strcat(sText, sByte); } } //---------------------------------------------------------------------------- // Convert a String representation of a hash back to a hash. //---------------------------------------------------------------------------- void MD5StrToHash(LPCSTR sText, BYTE buf[MD5_HASH_SIZE]) { assert(strlen(sText) == 2 * MD5_HASH_SIZE); char sByte[5] = "0xNN"; char* sEnd = NULL; for (int i = 0; i < MD5_HASH_SIZE; i++) { sByte[2] = sText[i * 2]; sByte[3] = sText[i * 2 + 1]; buf[i] = (BYTE)strtol(sByte, &sEnd, 16); } }