/* =========================================================================== Return to Castle Wolfenstein single player GPL Source Code Copyright (C) 1999-2010 id Software LLC, a ZeniMax Media company. This file is part of the Return to Castle Wolfenstein single player GPL Source Code (“RTCW SP Source Code”). RTCW SP Source Code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RTCW SP Source Code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with RTCW SP Source Code. If not, see . In addition, the RTCW SP Source Code is also subject to certain additional terms. You should have received a copy of these additional terms immediately following the terms and conditions of the GNU General Public License which accompanied the RTCW SP Source Code. If not, please request a copy in writing from id Software at the address below. If you have questions concerning this license or the applicable additional terms, you may contact in writing id Software LLC, c/o ZeniMax Media Inc., Suite 120, Rockville, Maryland 20850 USA. =========================================================================== */ #ifndef __MATHLIB__ #define __MATHLIB__ // mathlib.h #include #ifdef DOUBLEVEC_T typedef double vec_t; #else typedef float vec_t; #endif typedef vec_t vec3_t[3]; typedef vec_t vec4_t[4]; #define SIDE_FRONT 0 #define SIDE_ON 2 #define SIDE_BACK 1 #define SIDE_CROSS -2 #define PITCH 0 #define YAW 1 #define ROLL 2 #define Q_PI 3.14159265358979323846 #define DEG2RAD( a ) ( a * M_PI ) / 180.0F #ifndef M_PI #define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h #endif extern vec3_t vec3_origin; #define EQUAL_EPSILON 0.001 qboolean VectorCompare( vec3_t v1, vec3_t v2 ); #define DotProduct( x,y ) ( x[0] * y[0] + x[1] * y[1] + x[2] * y[2] ) #define VectorSubtract( a,b,c ) {c[0] = a[0] - b[0]; c[1] = a[1] - b[1]; c[2] = a[2] - b[2];} #define VectorAdd( a,b,c ) {c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2];} #define VectorCopy( a,b ) {b[0] = a[0]; b[1] = a[1]; b[2] = a[2];} #define Vector4Copy( a,b ) {b[0] = a[0]; b[1] = a[1]; b[2] = a[2]; b[3] = a[3];} #define VectorScale( v, s, o ) ( ( o )[0] = ( v )[0] * ( s ),( o )[1] = ( v )[1] * ( s ),( o )[2] = ( v )[2] * ( s ) ) #define VectorClear( x ) {x[0] = x[1] = x[2] = 0;} #define VectorNegate( x, y ) {y[0] = -x[0]; y[1] = -x[1]; y[2] = -x[2];} #define VectorMA( v, s, b, o ) ( ( o )[0] = ( v )[0] + ( b )[0] * ( s ),( o )[1] = ( v )[1] + ( b )[1] * ( s ),( o )[2] = ( v )[2] + ( b )[2] * ( s ) ) vec_t Q_rint( vec_t in ); vec_t _DotProduct( vec3_t v1, vec3_t v2 ); void _VectorSubtract( vec3_t va, vec3_t vb, vec3_t out ); void _VectorAdd( vec3_t va, vec3_t vb, vec3_t out ); void _VectorCopy( vec3_t in, vec3_t out ); void _VectorScale( vec3_t v, vec_t scale, vec3_t out ); void _VectorMA( vec3_t va, double scale, vec3_t vb, vec3_t vc ); double VectorLength( vec3_t v ); void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ); vec_t VectorNormalize( vec3_t inout ); vec_t ColorNormalize( vec3_t in, vec3_t out ); vec_t VectorNormalize2( const vec3_t v, vec3_t out ); void VectorInverse( vec3_t v ); void ClearBounds( vec3_t mins, vec3_t maxs ); void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ); void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up ); void R_ConcatRotations( float in1[3][3], float in2[3][3], float out[3][3] ); void RotatePoint( vec3_t point, float matrix[3][3] ); void CreateRotationMatrix( vec3_t angles, float matrix[3][3] ); #endif