/*
* Seven Kingdoms: Ancient Adversaries
*
* Copyright 1997,1998 Enlight Software Ltd.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
// Filename : OCOLTBL.CPP
// Description : generated color remap table
#include
#include
#include
// ---------- define const -----------//
// value of full intensity, 255 for 24-bit color, 64 for 18-bit color
#define MAX_COLOUR 255
#define M_PI 3.14159265359L
#define NEAREST_COLOR 8
BYTE ColorTable::identity_table[MAX_COLOUR_TABLE_SIZE] =
{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
// --------- define inline function ---------//
inline int sq(int a)
{
return a*a;
}
// ---------- begin of function ColorTable::ColorTable ----------//
ColorTable::ColorTable()
{
remap_table = NULL;
remap_table_array = NULL;
}
ColorTable::ColorTable(int absScale, int tableSize, BYTE *customTable)
{
remap_table = NULL;
remap_table_array = NULL;
init(absScale, tableSize, customTable);
}
// ---------- end of function ColorTable::ColorTable ----------//
// ---------- begin of function ColorTable::ColorTable ----------//
ColorTable::ColorTable(const ColorTable& ct) : abs_scale(ct.abs_scale),
table_size(ct.table_size)
{
if( ct.remap_table )
{
remap_table = (BYTE *)mem_add(table_size * (2*abs_scale+1) );
memcpy(remap_table, ct.remap_table, table_size * (2*abs_scale+1) );
remap_table_array = (BYTE **)mem_add(sizeof(BYTE *) * (2*abs_scale+1) );
create_table_array();
}
else
{
remap_table = NULL;
remap_table_array = NULL;
}
}
// ---------- end of function ColorTable::ColorTable ----------//
// ---------- begin of function ColorTable::~ColorTable ----------//
ColorTable::~ColorTable()
{
deinit();
}
// ---------- end of function ColorTable::~ColorTable ----------//
// ---------- begin of function ColorTable::init ----------//
void ColorTable::init()
{
deinit();
abs_scale = 0;
}
// initialize a custom table, given the no. of absolute scale and table size
// the customTable array is (2*absScale+1) groups
// and each group has (tableSize) bytes of remapping entries
void ColorTable::init(int absScale, int tableSize, BYTE *customTable)
{
deinit();
abs_scale = absScale;
table_size = table_size;
remap_table = (BYTE *)mem_add(table_size * (2*absScale+1) );
memcpy(remap_table, customTable, tableSize * (2*absScale+1) );
remap_table_array = (BYTE **)mem_add(sizeof(BYTE *) * (2*absScale+1) );
create_table_array();
}
// ---------- end of function ColorTable::init ----------//
// ---------- begin of function ColorTable::deinit ----------//
void ColorTable::deinit()
{
if( remap_table )
{
mem_del( remap_table );
remap_table = NULL;
}
if( remap_table_array)
{
mem_del( remap_table_array);
remap_table_array = NULL;
}
}
// ---------- end of function ColorTable::deinit ----------//
// ---------- begin of function ColorTable::operator= ----------//
ColorTable& ColorTable::operator=(const ColorTable& ct)
{
deinit();
abs_scale = ct.abs_scale;
table_size= ct.table_size;
if( ct.remap_table )
{
remap_table = (BYTE *)mem_add(table_size * (2*abs_scale+1) );
memcpy(remap_table, ct.remap_table, table_size * (2*abs_scale+1) );
remap_table_array = (BYTE **)mem_add(sizeof(BYTE *) * (2*abs_scale+1) );
create_table_array();
}
else
{
remap_table = NULL;
remap_table_array = NULL;
}
return *this;
}
// ---------- begin of function ColorTable::operator= ----------//
// ---------- begin of function ColorTable::generate_table ----------//
//
// generate +absScale to -absScale (total 2*absScale +1 remap table )
// from palette pal (768 byte)
// any color in the reservedColor is unmodified
// note reservedColor array must be in accending order
//
// absScale number of scale to full white/full black
// pal input palette, size must be 3*table_size
// palSize size of palette entry
// reservedColor array of reserved color,
// reservedCount size of reservedColor
// reserved color will map to itself and will not be mapped except by itself
//
void ColorTable::generate_table(int absScale, PalDesc & palD, RGBColor (*fp)(RGBColor, int, int))
{
int palSize = palD.pal_size;
err_when(absScale < 0 || palD.reserved_color < 0 || palD.pal == NULL);
err_when(palSize > MAX_COLOUR_TABLE_SIZE);
deinit();
abs_scale = absScale;
table_size = palSize;
BYTE *remapEntry = remap_table = (BYTE *)mem_add(table_size * (2*absScale+1) );
remap_table_array = (BYTE **)mem_add(sizeof(BYTE *) * (2*absScale+1) );
int scale;
// ------- generate negative scale ----------//
for( scale = -absScale; scale < 0; ++scale)
{
int reservedIndex = 0;
for( int c=0; c < palSize; ++c, ++remapEntry)
{
*remapEntry = c;
// ------ see if it is a reserved color --------//
if( palD.is_reserved(c, reservedIndex) )
continue;
RGBColor rgb = (*fp)(palD.get_rgb(c), scale, absScale);
// ------- scan the closet color, except the reserved color
int cc, dist[NEAREST_COLOR], thisDiff;
BYTE closeColor[NEAREST_COLOR]; // [0] is the closest
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
closeColor[cc] = c;
dist[cc] = 3*0xff*0xff+1;
}
int dReservedIndex = 0;
int d;
for( d=0; d < palSize; ++d)
{
// ------- skip scanning reserved color ------//
if( palD.is_reserved(d, dReservedIndex) )
continue;
// ------- compare the sqaure distance ----------//
thisDiff = color_dist(rgb, palD.get_rgb(d));
if( thisDiff < dist[NEAREST_COLOR-1])
{
BYTE d1 = (BYTE) d;
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
if( thisDiff < dist[cc] )
{
// swap thisDiff and dist[cc]
// so that the replaced result will be shifted to next
int tempd;
BYTE tempc;
tempd = dist[cc];
dist[cc] = thisDiff;
thisDiff = tempd;
tempc = closeColor[cc];
closeColor[cc] = d1;
d1 = tempc;
}
}
}
}
// closeColor[] are the closest 8 colours, use hsv comparison to find the nearest
d = closeColor[0];
*remapEntry = d;
int minDiff = color_dist_hsv(rgb, palD.get_rgb(d));
for( cc = 1; cc < NEAREST_COLOR; ++cc)
{
d = closeColor[cc];
thisDiff = color_dist_hsv(rgb, palD.get_rgb(d));
if( thisDiff < minDiff )
{
minDiff = thisDiff;
*remapEntry = d;
}
}
}
}
err_when( remapEntry - remap_table != table_size * abs_scale);
// scale == 0
memcpy( remapEntry, identity_table, palSize);
remapEntry += table_size;
// ------- generate positive scale ----------//
for( scale = 1; scale <= absScale; ++scale)
{
int reservedIndex = 0;
for( int c=0; c < palSize; ++c, ++remapEntry)
{
*remapEntry = c;
// ------ see if it is a reserved color --------//
if( palD.is_reserved(c, reservedIndex) )
continue;
RGBColor rgb = (*fp)(palD.get_rgb(c), scale, absScale);
// ------- scan the closet color, except the reserved color
int cc, dist[NEAREST_COLOR], thisDiff;
BYTE closeColor[NEAREST_COLOR]; // [0] is the closest
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
closeColor[cc] = c;
dist[cc] = 3*0xff*0xff+1;
}
int dReservedIndex = 0;
int d;
for( d=0; d < palSize; ++d)
{
// ------- skip scanning reserved color ------//
if( palD.is_reserved(d, dReservedIndex) )
continue;
// ------- compare the sqaure distance ----------//
thisDiff = color_dist(rgb, palD.get_rgb(d));
if( thisDiff < dist[NEAREST_COLOR-1])
{
BYTE d1 = (BYTE) d;
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
if( thisDiff < dist[cc] )
{
// swap thisDiff and dist[cc]
// so that the replaced result will be shifted to next
int tempd;
BYTE tempc;
tempd = dist[cc];
dist[cc] = thisDiff;
thisDiff = tempd;
tempc = closeColor[cc];
closeColor[cc] = d1;
d1 = tempc;
}
}
}
}
// closeColor[] are the closest 8 colours, use hsv comparison to find the nearest
d = closeColor[0];
*remapEntry = d;
int minDiff = color_dist_hsv(rgb, palD.get_rgb(d));
for( cc = 1; cc < NEAREST_COLOR; ++cc)
{
d = closeColor[cc];
thisDiff = color_dist_hsv(rgb, palD.get_rgb(d));
if( thisDiff < minDiff )
{
minDiff = thisDiff;
*remapEntry = d;
}
}
}
}
create_table_array();
}
// ---------- end of function ColorTable::generate_table ----------//
// ---------- begin of function ColorTable::generate_table_fast ----------//
// simplified version, it ignores reserved colors
void ColorTable::generate_table_fast (int absScale, PalDesc &palD, RGBColor (*fp)(RGBColor, int, int))
{
int palSize = palD.pal_size;
err_when(absScale < 0 || palD.pal == NULL);
err_when(palSize > MAX_COLOUR_TABLE_SIZE);
deinit();
abs_scale = absScale;
table_size = palSize;
BYTE *remapEntry = remap_table = (BYTE *)mem_add(table_size * (2*absScale+1) );
remap_table_array = (BYTE **)mem_add(sizeof(BYTE *) * (2*absScale+1) );
int scale;
// ------- generate negative scale ----------//
for( scale = -absScale; scale < 0; ++scale)
{
for( int c=0; c < palSize; ++c, ++remapEntry)
{
*remapEntry = c;
RGBColor rgb = (*fp)(palD.get_rgb(c), scale, absScale);
// ------- scan the closet color, except the reserved color
int cc, dist[NEAREST_COLOR], thisDiff;
BYTE closeColor[NEAREST_COLOR]; // [0] is the closest
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
closeColor[cc] = c;
dist[cc] = 3*0xff*0xff+1;
}
int d;
for( d=0; d < palSize; ++d)
{
// ------- compare the sqaure distance ----------//
thisDiff = color_dist(rgb, palD.get_rgb(d));
if( thisDiff < dist[NEAREST_COLOR-1])
{
BYTE d1 = (BYTE) d;
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
if( thisDiff < dist[cc] )
{
// swap thisDiff and dist[cc]
// so that the replaced result will be shifted to next
int tempd;
BYTE tempc;
tempd = dist[cc];
dist[cc] = thisDiff;
thisDiff = tempd;
tempc = closeColor[cc];
closeColor[cc] = d1;
d1 = tempc;
}
}
}
}
// closeColor[] are the closest 8 colours, use hsv comparison to find the nearest
d = closeColor[0];
*remapEntry = d;
int minDiff = color_dist_hsv(rgb, palD.get_rgb(d));
for( cc = 1; cc < NEAREST_COLOR; ++cc)
{
d = closeColor[cc];
thisDiff = color_dist_hsv(rgb, palD.get_rgb(d));
if( thisDiff < minDiff )
{
minDiff = thisDiff;
*remapEntry = d;
}
}
}
}
err_when( remapEntry - remap_table != table_size * abs_scale);
// scale == 0
memcpy( remapEntry, identity_table, palSize);
remapEntry += table_size;
// ------- generate positive scale ----------//
for( scale = 1; scale <= absScale; ++scale)
{
for( int c=0; c < palSize; ++c, ++remapEntry)
{
*remapEntry = c;
RGBColor rgb = (*fp)(palD.get_rgb(c), scale, absScale);
// ------- scan the closet color, except the reserved color
int cc, dist[NEAREST_COLOR], thisDiff;
BYTE closeColor[NEAREST_COLOR]; // [0] is the closest
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
closeColor[cc] = c;
dist[cc] = 3*0xff*0xff+1;
}
int d;
for( d=0; d < palSize; ++d)
{
// ------- compare the sqaure distance ----------//
thisDiff = color_dist(rgb, palD.get_rgb(d));
if( thisDiff < dist[NEAREST_COLOR-1])
{
BYTE d1 = (BYTE) d;
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
if( thisDiff < dist[cc] )
{
// swap thisDiff and dist[cc]
// so that the replaced result will be shifted to next
int tempd;
BYTE tempc;
tempd = dist[cc];
dist[cc] = thisDiff;
thisDiff = tempd;
tempc = closeColor[cc];
closeColor[cc] = d1;
d1 = tempc;
}
}
}
}
// closeColor[] are the closest 8 colours, use hsv comparison to find the nearest
d = closeColor[0];
*remapEntry = d;
int minDiff = color_dist_hsv(rgb, palD.get_rgb(d));
for( cc = 1; cc < NEAREST_COLOR; ++cc)
{
d = closeColor[cc];
thisDiff = color_dist_hsv(rgb, palD.get_rgb(d));
if( thisDiff < minDiff )
{
minDiff = thisDiff;
*remapEntry = d;
}
}
}
}
create_table_array();
}
// ---------- end of function ColorTable::generate_table_fast ----------//
// ---------- begin of function ColorTable::generate_table ----------//
//
// match one set of palette with a universal palette
// the set of palette is pointed by sPal, size is sPalSize,
// with some reserved color pointed by sReservedColor and size is sReservedCount
// the univeral palette is pointed by Pal, size is PalSize,
// with some reserved color pointed by reservedColor and size is reservedCount
// note : numbers in reservedColor must be in ascending order
//
// generated map size must be palSize and it has only scale
//
void ColorTable::generate_table(PalDesc &sPalD, PalDesc &palD)
{
int sPalSize = sPalD.pal_size, palSize = palD.pal_size;
err_when(sPalD.pal == NULL || sPalSize <= 0 || sPalD.reserved_count < 0);
err_when(palD.pal == NULL || palSize <= 0 || palD.reserved_count < 0);
err_when(palSize > MAX_COLOUR_TABLE_SIZE || sPalSize > MAX_COLOUR_TABLE_SIZE);
deinit();
abs_scale = 0;
table_size = sPalSize;
BYTE *remapEntry = remap_table = (BYTE *)mem_add(sPalSize);
remap_table_array = (BYTE **)mem_add(sizeof(BYTE *));
int sReservedIndex = 0;
for(int c=0; c < sPalSize; ++c, ++remapEntry)
{
*remapEntry = c; // put a default value (as if it is a reserved color)
// ------ see if it is a reserved color --------//
if( sPalD.is_reserved(c, sReservedIndex))
continue;
RGBColor rgb = sPalD.get_rgb(c);
// ------- scan the closet color, except the reserved color
int cc, dist[NEAREST_COLOR], thisDiff;
BYTE closeColor[NEAREST_COLOR]; // [0] is the closest
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
closeColor[cc] = c;
dist[cc] = 3*0xff*0xff+1;
}
int dReservedIndex = 0;
int d;
for( d=0; d < palSize; ++d)
{
// ------- skip scanning reserved color ------//
if( palD.is_reserved(d, dReservedIndex) )
continue;
// ------- compare the sqaure distance ----------//
thisDiff = color_dist(rgb, palD.get_rgb(d));
if( thisDiff < dist[NEAREST_COLOR-1])
{
BYTE d1 = (BYTE) d;
for( cc = 0; cc < NEAREST_COLOR; ++cc )
{
if( thisDiff < dist[cc] )
{
// swap thisDiff and dist[cc]
// so that the replaced result will be shifted to next
int tempd;
BYTE tempc;
tempd = dist[cc];
dist[cc] = thisDiff;
thisDiff = tempd;
tempc = closeColor[cc];
closeColor[cc] = d1;
d1 = tempc;
}
}
}
}
// closeColor[] are the closest 8 colours, use hsv comparison to find the nearest
d = closeColor[0];
*remapEntry = d;
int minDiff = color_dist_hsv(rgb, palD.get_rgb(d));
for( cc = 1; cc < NEAREST_COLOR; ++cc)
{
d = closeColor[cc];
thisDiff = color_dist_hsv(rgb, palD.get_rgb(d));
if( thisDiff < minDiff )
{
minDiff = thisDiff;
*remapEntry = d;
}
}
}
create_table_array();
}
// ---------- end of function ColorTable::generate_table ----------//
// ---------- begin of function ColorTable::get_table ----------//
BYTE *ColorTable::get_table(int scale)
{
err_when( !remap_table );
err_when( scale < -abs_scale || scale > abs_scale);
return remap_table + table_size * (scale + abs_scale);
}
// ---------- end of function ColorTable::get_table ----------//
// ---------- begin of function ColorTable::create_table_array ----------//
void ColorTable::create_table_array()
{
err_when( !remap_table );
for( int j = 0; j < 2*abs_scale+1; ++j)
{
remap_table_array[j] = remap_table + table_size * j;
}
}
// ---------- end of function ColorTable::create_table_array ----------//
// ---------- begin of function ColorTable::bright_func ---------//
RGBColor ColorTable::bright_func(RGBColor c, int scale, int absScale)
{
RGBColor ans;
if( scale < 0)
{
double factor = sqrt(double(absScale + scale) / absScale);
ans.red = BYTE(c.red * factor);
ans.green = BYTE(c.green * factor);
ans.blue = BYTE(c.blue * factor);
}
else
{
ans.red = c.red + (MAX_COLOUR - c.red) * scale / absScale;
ans.green = c.green + (MAX_COLOUR - c.green) * scale / absScale;
ans.blue = c.blue + (MAX_COLOUR - c.blue) * scale / absScale;
}
return ans;
}
// ---------- end of function ColorTable::bright_func ---------//
// ---------- begin of function ColorTable::patch_table --------//
void ColorTable::patch_table(BYTE from, BYTE to)
{
err_when(from >= table_size);
for(int s = -abs_scale; s <= abs_scale; ++s)
{
get_table(s)[from] = to;
}
}
// ---------- end of function ColorTable::patch_table --------//
// ---------- begin of function ColorTable::color_dist --------//
int ColorTable::color_dist(RGBColor c1, RGBColor c2)
{
return sq((int)c2.red-c1.red) + sq((int)c2.green-c1.green) + sq((int)c2.blue-c1.blue);
}
// ---------- end of function ColorTable::color_dist --------//
// ---------- begin of function ColorTable::color_dist_hsv --------//
int ColorTable::color_dist_hsv(RGBColor c1, RGBColor c2)
{
// calculate a distance for the colour
// h betweeh 0 and 6
// s between 0 and 1
// v between 0 and 1
HSVColor hsv1(rgb2hsv(c1));
HSVColor hsv2(rgb2hsv(c2));;
double dx = hsv2.saturation * cos(hsv2.hue * M_PI / 3.0) - hsv1.saturation * cos(hsv1.hue * M_PI / 3.0);
double dy = hsv2.saturation * sin(hsv2.hue * M_PI / 3.0) - hsv1.saturation * sin(hsv1.hue * M_PI / 3.0);
double dv = hsv2.brightness - hsv1.brightness;
return int(10000 * ( dx*dx + dy*dy + dv*dv ));
}
// ---------- end of function ColorTable::color_dist_hsv --------//
// -------- begin of function ColorTable::rgb2hsv ---------//
HSVColor ColorTable::rgb2hsv(RGBColor &rgb)
{
if( rgb.red == rgb.green && rgb.red == rgb.blue)
{
return HSVColor(1.0, 0.0, rgb.red / 255.0);
}
// find the smallest colour
if( rgb.red <= rgb.green && rgb.red <= rgb.blue)
{
if( rgb.green >= rgb.blue )
{
// g is the primary, b is secondary
return HSVColor( 2.0 + (double) rgb.blue/ rgb.green,
rgb.blue != 0 ? 1.0 - (double) rgb.red / rgb.blue : 1.0,
rgb.green / 255.0);
}
else
{
// b is the primary, g is secondary
return HSVColor( 4.0 - (double) rgb.green / rgb.blue,
rgb.green != 0 ? 1.0 - (double) rgb.red/ rgb.green : 1.0,
rgb.blue / 255.0);
}
}
else if( rgb.green <= rgb.red && rgb.green <= rgb.blue)
{
if( rgb.red >= rgb.blue)
{
// r is the primary, b is secondary
return HSVColor( 6.0 - (double)rgb.blue/rgb.red,
rgb.blue!=0 ? 1.0 - (double)rgb.green/rgb.blue: 1.0,
rgb.red / 255.0);
}
else
{
// b is the primary, r is secondary
return HSVColor( 4.0 + (double)rgb.red/rgb.blue,
rgb.red!=0 ? 1.0 - (double)rgb.green/rgb.red: 1.0,
rgb.blue / 255.0);
}
}
else if( rgb.blue <= rgb.red && rgb.blue <= rgb.green)
{
if( rgb.red >= rgb.green)
{
// r is the primary, g is secondary
return HSVColor( (double)rgb.green/rgb.red,
rgb.green!=0 ? 1.0 - (double)rgb.blue/rgb.green: 1.0,
rgb.red / 255.0);
}
else
{
// g is the primary, r is secondary
return HSVColor( 2.0 - (double)rgb.red/rgb.green,
rgb.red!=0 ? 1.0 - (double)rgb.blue/rgb.red: 1.0,
rgb.green / 255.0);
}
}
else
{
err_here();
return HSVColor( 1.0, 0.0, rgb.red / 255.0);
}
}
// -------- end of function ColorTable::rgb2hsv ---------//
// -------- begin of function ColorTable::hsv2rgb ---------//
RGBColor ColorTable::hsv2rgb(HSVColor &hsv)
{
while( hsv.hue < 0.0)
hsv.hue += 6.0;
while(hsv.hue >= 6.0)
hsv.hue -= 6.0;
double p = hsv.brightness * 255.0;
err_when( p >= 256.0);
RGBColor ans;
if( hsv.hue < 1.0)
{
// r is primary, g is secondary
ans.red = BYTE(p);
p *= hsv.hue;
ans.green = BYTE(p); // *r * h;
p *= 1.0 - hsv.saturation;
ans.blue = BYTE(p);
}
else if( hsv.hue < 2.0)
{
// g is primary, r is secondary
ans.green = BYTE(p);
p *= 2.0 - hsv.hue;
ans.red = BYTE(p);
p *= 1.0 - hsv.saturation;
ans.blue = BYTE(p);
}
else if( hsv.hue < 3.0)
{
// g is primary, b is secondary
ans.green = BYTE(p);
p *= hsv.hue - 2.0;
ans.blue = BYTE(p);
p *= 1.0 - hsv.saturation;
ans.red = BYTE(p);
}
else if( hsv.hue < 4.0)
{
// b is primary g is secondary
ans.blue = BYTE(p);
p *= 4.0 - hsv.hue;
ans.green = BYTE(p);
p *= 1.0 - hsv.saturation;
ans.red = BYTE(p);
}
else if( hsv.hue < 5.0)
{
// b is primary, r is secondary
ans.blue = BYTE(p);
p *= hsv.hue - 4.0;
ans.red = BYTE(p);
p *= 1.0 - hsv.saturation;
ans.green = BYTE(p);
}
else if( hsv.hue < 6.0)
{
// r is primary, b is secondary
ans.red = BYTE(p);
p *= 6.0 - hsv.hue;
ans.blue = BYTE(p);
p *= 1.0 - hsv.saturation;
ans.green = BYTE(p);
}
return ans;
}
// -------- end of function ColorTable::hsv2rgb ---------//
// -------- begin of function ColorTable::write_file ---------//
int ColorTable::write_file(File *f)
{
return( f->file_put_long(abs_scale) && !f->file_put_long(table_size)
&& f->file_write(remap_table, table_size * (2*abs_scale+1)) );
}
// -------- end of function ColorTable::write_file ---------//
// -------- begin of function ColorTable::read_file ---------//
int ColorTable::read_file(File *f)
{
deinit();
abs_scale = f->file_get_long();
table_size = f->file_get_long();
remap_table = (BYTE *)mem_add(table_size * (2*abs_scale+1) );
if(! f->file_read(remap_table, table_size * (2*abs_scale+1)) )
{
mem_del(remap_table);
remap_table = 0;
return 0;
}
remap_table_array = (BYTE **)mem_add(sizeof(BYTE *) * (2*abs_scale+1) );
create_table_array();
return 1;
}
// -------- end of function ColorTable::read_file ---------//